Sensitivity analysis of random linear dynamical systems using quadratic outputs

نویسندگان

چکیده

In uncertainty quantification, a stochastic modelling is often applied, where parameters are substituted by random variables. We investigate linear dynamical systems of ordinary differential equations with quantity interest as output. Our objective to analyse the sensitivity output respect A variance-based approach generates partial variances and indices. expand using generalised polynomial chaos. The Galerkin method yields larger system equations. represent quadratic outputs this system. examine norms formulation obtain measures. Furthermore, we apply model order reduction balanced truncation, which allows for an efficient computation guaranteed error bounds. Numerical results shown test example.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity analysis of linear dynamical systems in uncertainty quantification

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version ...

متن کامل

Sensitivity analysis and model order reduction for random linear dynamical systems

We consider linear dynamical systems defined by differential algebraic equations. The associated input-output behaviour is given by a transfer function in the frequency domain. Physical parameters of the dynamical system are replaced by random variables to quantify uncertainties. We analyse the sensitivity of the transfer function with respect to the random variables. Total sensitivity coeffici...

متن کامل

Structural stability of linear random dynamical systems

In this paper structural stability of discrete-time linear random dynam-ical systems is studied. A random dynamical system is called structurally stable with respect to a random norm if it is topologically conjugate to any random dynamical system which is suuciently close to it in this norm. We prove that a discrete-time linear random dynamical system is structurally stable with respect to its ...

متن کامل

observational dynamical systems

چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...

15 صفحه اول

Contraction analysis of nonlinear random dynamical systems

In order to bring contraction analysis into the very fruitful and topical fields of stochastic and Bayesian systems, we extend here the theory describes in [Lohmiller and Slotine, 1998] to random differential equations. We propose new definitions of contraction (almost sure contraction and contraction in mean square) which allow to master the evolution of a stochastic system in two manners. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2021

ISSN: ['0377-0427', '1879-1778', '0771-050X']

DOI: https://doi.org/10.1016/j.cam.2019.112491